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Abstract 

One of the challenging problems for software developers is guaranteeing that a sys-

tem as built is consistent with its architectural design. In this paper we describe a 

technique that uses run time observations about an executing system to construct an 

architectural view of the system. In this technique we develop mappings that exploit 

regularities in system implementation and architectural style. These mappings de-

scribe how low-level system events can be interpreted as more abstract architectural 

operations, and are formally defined using Colored Petri Nets. In this paper we de-

scribe a system, called DiscoTect, that uses these mappings, and we introduce the 

DiscoSTEP mapping language and its formal definition. Two case studies showing 

the application of DiscoTect suggest that the tool is practical to apply to legacy sys-

tems and can dynamically verify conformance to a pre-existing architectural specifi-

cation. 
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1  Introduction 

A well-defined software architecture is critical for the success of complex software 

systems. An architectural model consists of many views (e.g., [24]) of the system. 

One particularly useful view is the component and connector (C&C) view, which 

provides a high-level view of a system in terms of its principal runtime components 

(e.g., clients, servers, databases), their interactions (e.g., remote procedure call, 

event multicast, piped streams), and their properties (e.g., throughputs, latencies, 

reliabilities) [5][32][36]. As an abstract representation of a system, such an architec-

ture permits many forms of high-level inspection and analysis, allowing the archi-

tect to determine if a system’s design will satisfy its critical quality attributes. Con-

sequently, over the past decade, considerable research and development has gone 

into the development of notations, tools, and methods to support architectural de-

sign [7][8][27]. 

However, a persisting difficult problem is determining whether a system as im-

plemented has the architecture as designed. Without some form of consistency guar-

antees, the validity of any architectural analysis will be suspect at best and com-

pletely erroneous at worst. 

Two techniques have been used to determine or enforce relationships between a 

system’s C&C software architecture and its implementation. The first is to ensure 

consistency by construction. This can be done by embedding architectural constructs 

in an implementation language (e.g., as described by Aldrich and colleagues [2]) 

where analysis tools can check for conformance. Or, it can be done through code gen-

eration, using tools to create an implementation from a more abstract architectural 

definition [35][38][39].  

 Ensuring consistency by construction is effective when it can be applied, since 

tools can guarantee conformance; unfortunately it has limited applicability. In par-

ticular, it can usually be applied only in situations where engineers are required to 

use specific architecture-based development tools, languages, and implementation 

strategies. For systems that are composed of existing parts, or that require a style of 

architecture or implementation outside those supported by generation tools, this ap-

proach does not apply. 

The second technique is to ensure conformance by extracting an architecture 

from a system’s code, using static code analysis [17][21][28]. When an implementa-

tion is sufficiently constrained so that modularization and coding patterns can be 

identified with architectural elements, this technique can work well. Unfortunately, 

however, the technique is limited by an inherent mismatch between static, code-

based structures (such as classes and packages), and the runtime structures that are 

the essence of most architectural descriptions [8][14]. In particular, the actual run-

time structures may not even be known until the program executes: clients and 

servers may come and go dynamically; components (e.g., Dynamic Linked Libraries) 

not under direct control of the implementers may be dynamically loaded; and so 

forth. Indeed, determining the actual runtime architectural configuration of a sys-

tem using static analysis is, in general, undecidable. 

A third, relatively unexplored, technique is to determine the architecture of a 

system by examining its runtime behavior. The key idea is that a system’s execution 
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can be monitored. Observations about its runtime behavior can then, in principal, be 

used to infer its dynamic architecture. This approach has the advantage that it ap-

plies to any system that can be monitored, it gives an accurate image of what is ac-

tually going on in the real system, it can accommodate systems whose architecture 

changes dynamically, and it imposes no a priori restrictions on system implementa-

tion or architectural style.  

However, there are a number of hard technical challenges in making this tech-

nique work. The most serious problem is finding mechanisms to bridge the abstrac-

tion gap: in general, low-level system observations do not map directly to architec-

tural constructs. For example, the creation of an architectural connector might in-

volve many low-level steps, and those actions might be temporally interleaved with 

many other architecturally relevant actions. Moreover, there is likely no single ar-

chitectural interpretation that will apply to all systems: different systems will use 

different runtime patterns to achieve the same architectural effect and, conversely, 

there are many possible architectural elements to which one might map the same 

low-level events.  

In this paper, we describe a technique to solve the problem of dynamic architec-

tural discovery for a large class of systems. The key idea is to provide a framework 

that allows one to map implementation styles to architecture styles. This mapping is 

defined conceptually as a Colored Petri Net [19] that is used at runtime to track the 

progress of the system and output architectural events when predefined runtime 

patterns are recognized. Thus the mapping provides a way to identify when a pro-

gram performs “architecturally significant” actions that produce architectural struc-

tures. An important additional feature of the approach is the ability to reuse such 

mappings across systems. In particular, we exploit regularity in implementation and 

architectural styles so that a single mapping can serve as an architectural extractor 

for a large collection of similar systems, thereby reducing the cost of writing each 

abstraction mapping, while still providing flexibility. 

In the remainder of this paper, we describe the approach in detail, and describe 

the tool called DiscoTect, that we have implemented. Section 2 presents the Disco-

Tect approach, including an overview of the DiscoTect framework, and the Disco-

STEP language used for specifying mappings. We then outline a formal semantics 

for DiscoSTEP that specifies its meaning in terms of Colored Petri Nets. We illus-

trate this with a simple example. In Section 3 we describe the implementation of 

DiscoTect. Sections 4 and 5 present case studies that we use to evaluate the efficacy 

of DiscoTect. In Section 6 we position our work in the context of related research. 

Finally, in Section 7 we present our conclusions and future work. 

2 DiscoTect  

2.1 Technical Challenges 

Any approach that supports dynamic discovery of architectures must address three 

challenges:  

(1) Monitoring: observing a system’s runtime behavior,  
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(2) Mapping: interpreting that runtime behavior in terms of architecturally 
meaningful events, and  

(3) Architecture Building: representing the resulting architecture.  

In this paper, we are primarily concerned with the second problem of bridging 

the abstraction gap between system observations and architectural effects. There 

are a number of issues that make this a hard problem. First, mappings between low-

level system observations and architectural events are not usually one-to-one. Many 

low-level events may be completely irrelevant. More importantly, a given abstract 

event, such as creating a new architectural connector, might involve many runtime 

events, such as object creation and lookup, library calls to runtime infrastructure, 

initialization of data structures, and so forth. Conversely, a single implementation 

event might represent a series of architectural events. For example, executing a pro-

cedure call between two objects might signal the creation of a new connector and its 

attachment to the runtime ports of the respective architectural components. This 

implies the need for a technique that can keep track of intermediate information 

about mappings to an architectural model. 

Second, architecturally relevant actions are typically interleaved in an imple-

mentation. At any given moment, a system might be midway through creating sev-

eral components and their connectors. This implies that any attempt to recognize 

architectural events must be able to cope with concurrent intermediate states. 

Third, there is no single gold standard for indicating what implementation pat-

terns represent specific architectural events. Different implementations may choose 

different techniques for creating the same abstract architectural element. Consider 

the number of ways that one might implement pipes, for example. Indeed, one might 

even find multiple implementation approaches in the same system. Moreover, there 

is no single architectural style or pattern that can be used for all systems. For ex-

ample, the use of sockets might be used to represent many different types of connec-

tors. To handle this variability of implementation strategies and possible architec-

tural styles of interest, a language is required to define new mappings. Given a set of 

implementation conventions (which we will refer to as an implementation style) and 

a vocabulary of architectural element types and operations (which we will refer to as 

an architectural style [12]), we require a description that captures the way in which 

runtime events should be interpreted as operations on elements of the architectural 

style. Thus each pair of implementation style and architectural style has its own 

mapping. A significant consequence is that these mappings can be reused across 

programs that are implemented in the same style.  

In summary, taking these challenges into account produces the following re-

quirements for an approach to dynamically determine the architecture of a running 

system: 

1. It must handle M-N mappings between low-level system events and con-
structs at the architectural level; 

2. It must be able to keep track of concurrent and interleaved sets of event 
traces that produce architecturally significant events; 

3. It needs to have flexibility in mapping implementation style to architectural 
style. 



Schmerl, Aldrich, Garlan, Kazman, Yan 

 6 

2.2 The DiscoTect Approach 

To address these concerns, we have adopted the approach illustrated in Figure 1. 

Events captured from a running system are first filtered to select the subset of sys-

tem observations that must be considered. The resulting stream of events is then fed 

to the DiscoTect Runtime Engine. The DiscoTect Engine takes in a specification of 

the mapping, written in a language called DiscoSTEP (Discovering Structure 

Through Event Processing). The DiscoTect engine constructs a Colored Petri Net 

from the mapping to recognize interleaved patterns of runtime events and, when ap-

propriate, to produce a set of architectural operations as outputs. Those operations 

are fed to an Architecture Builder that incrementally creates an architectural model, 

which can then be displayed to a user or processed by architecture analysis tools. We 

now elaborate each of the three main components in turn: 

1. DiscoSTEP Mapping Specification. We have developed a language, called 
DiscoSTEP for specificying mappings between low-level and architecture 

events. The execution semantics of these mappings is defined using Colored 

Petri Nets. We provide a translation from DiscoSTEP mappings to Colored 

Petri Nets. This translation is defined in Section 2.4. 

2. DiscoTect Runtime Engine. The run-time engine takes, as inputs, events 
from the running program and a DiscoSTEP specification and then runs the 

DiscoSTEP specification to produce architecture events. System runtime 

events are first intercepted and converted into XML (Extensible Markup Lan-

guage) [XML] streams by Probes. The resulting stream of events is then fed 

to the DiscoTect Runtime Engine which uses the DiscoSTEP specification to 

recognize interleaved patterns of runtime events and, when appropriate, out-

puts a set of architectural events. 

Figure 1. The DiscoTect Architecture 

Running System 

DiscoTect Runtime 
Engine 

Architecture  

Builder 
Architectural 

Model DiscoSTEP  

Mapping Specifi-
cation 

DiscoSTEP 
Compiler 

Probe

s 

High-Level Events 

Low-Level Events 
Legend: 

File 
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nent 

Event bus 

Event flow 
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3. Architecture Builder. The architecture builder takes architectural events 
and incrementally constructs an architectural description, which can then be 

displayed to a user or processed by other architecture analysis tools. 

2.3 Informal Introduction to DiscoSTEP 

To handle the variability of implementation strategies and architectural styles of 

interest, we provide a language to define mappings. DiscoSTEP specifies how to map 

system-level events to architectural-level events. To discover the architecture of a 

system, a program written in the DiscoSTEP language is compiled into byte code 

that can be interpreted by the DiscoTect engine. The DiscoTect engine processes the 

runtime events produced by the system and generates architectural events on the 

fly. The architectural events can be further consumed by an architectural builder to 

construct the architecture. 

A DiscoSTEP specification has three main ingredients: 

1. Events. Events are the kinds of events that are consumed and produced by 
the Disco-STEP program. These are defined by an XML Schema. 

2. Rules. Rules specify how to map a set of system-level events into architec-
tural events, and represent a single “step” in processing an event stream. 

3. Compositions. Compositions of rules specify how output events from rules 
are passed as input events to other rules. Complex patterns of event se-

quences to be processed can be defined in this way. 

 In this section, we informally describe these three components. We then use a 

simple example to illustrate how they form a language to instruct event handling. 

2.3.1 Events 

In DiscoTect we capture runtime events such as method calls, CPU utilization, net-

work bandwidth consumption, memory usage, etc. To generate these events at run-

time, we probe, or instrument, the running system. To do this, we can use resource 

monitoring tools, or code instrumention tools such as AspectJ [23] and AspectC++ 

[37] that allow us to inject code into the target system. These events are input into a 

DiscoSTEP specification. The specification produces architectural events, generated 

as a result of processing the runtime events, which in turn are used to produce the 

software architecture. 

2.3.1.1 Representation 

<element name="call"> 

 <complexType> 
  <attribute name=”method_name” type=”string” /> 
  <attribute name=”callee_id” type=”string” /> 
  <attribute name=”return_id” type=”string” /> 

 </complexType> 
</element> 

Figure 2. Defining Event Schema for use in DiscoSTEP. 
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We do not want the kinds of events consumed or produced by DiscoTect to be hard-

wired. We want the flexibility of customizing events for particular implementation 

and architectural styles. To do this, we use XML Schemas to specify the valid XML 

representations that can be used as events by DiscoSTEP, and the events are there-

fore represented in XML. This allows us to perform structural type checking of the 

use of events in the DiscoSTEP specification. Figure 2 illustrates the schema defini-

tion of a call type event, and Figure 3 provides an example of a valid XML event that 

conforms to this schema. 

2.3.1.2 Input and Output 

Our event processing engine takes runtime events as input and produce architec-

tural events as output. For clarity, and for the purposes of checking the correctness 

of a DiscoSTEP specification, we partition DiscoSTEP event types into inputs and 

outputs  For example, the call type event described above would be specified as an 

input, whereas an event like “create_component” would be specified as an output 

event. 

2.3.2 Rules and Compositions 

Rules determine what events should be processed, and generate new events that are 

either used to construct the architecture, or are fed into other rules to allow recogni-

tion of complex implementation patterns. Rules are composed of inputs, outputs, 

triggers and actions. Input and output blocks declare input events that a rule cares 

about and the output events that a rule can generate. Triggers are predicates over 

the input events.  Actions are assignments to the output events. When a trigger re-

turns true upon the arrival of input events, the actions in the corresponding rule are 

activated to instantiate the output events. Since events are represented in XML, we 

use a well-defined XML Query language called XQuery [45] to describe triggers and 

actions. This allows us to specify a large range of predicates and manipulations over 

XML, rather than inventing a new syntax. 

A rule only represents a fragment of what is needed to capture an architecture. 

Multiple rules can be assembled into a composition to handle event sequences. In a 

composition, rules are connected to each other by a set of input/output bindings. In 

the simplest case, a rule consumes an event. However, in many cases we want the 

rule to be continually active; for example, a rule for recognizing a port on a compo-

nent needs to fire multiple times so that multiple ports on the same component can 

be recognized. For this case, DiscoSTEP provides a bidirectional binding (denoted by 

<->). This means that a rule fires on an input without consuming that input (the 

event is implicitly reproduced as an output). Bidirectional bindings are a convenient 

shorthand for two directional bindings.  

Section 3.4.4 provides concrete examples of rules and compositions. 

<call method_name=”java.net.ServerSocket.accept”  

  callee_id=”19efb05” 
  return_id=”1d1acd3” /> 

Figure 3. An example “call” event. 
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2.3.3 Informal Runtime Semantics 

Informally, DiscoTect runs DiscoSTEP specifications in the following sequence: 

1. When an event is received by DiscoTect, associate the event with any rule 
that accepts that type of event. 

2. For any rule that has a value for each of its inputs, evaluate the trigger. 
3. If a trigger matches for a set of input events, execute the action with that set 

of events. 

4. For output events that are composed with other rules, send the event as in-
puts to those rules. For output events not composed with other rules, emit 

them from DiscoTect. 

For each rule, an input event can be considered to be a set of events that match 

that type. Triggers match events to be used in the rules. Formally, we model an 

event as a colored tokens (where the color is given by the type), and a rule as a tran-

sition. For each event, a token is generated and put in place before a transition. 

Rules consume tokens and put them in places after transitions. We discuss this for-

mal definition in Section 2.4. 

2.3.4 An Example DiscoSTEP Specification 

To illustrate the concept of events and the use of rules and compositions, we now 

profile a simple program written in Java. In doing so we illustrate how to specify 

events using DiscoSTEP, and how DiscoTect uses this specification to generate an 

architectural description. The example is a simple system that implements a chat 

server. The chat server creates a server socket and announces its intention to accept 

connections. When a client connects to the waiting server, a new thread (of type Cli-

entThread) is started, which forwards all messages from that client to all connected 

clients.  

While this system is simple, it allows us to illustrate the concepts of  Dis-

coSTEP. In later sections we provide more complex case studies. In the remainder of 

this section, we show how we instrumented this system, describe its DiscoSTEP 

specification, and discuss how DiscoTect processes this specification to produce an 

architectural description. 

The architectural description for this system is based on a client-server style. In-

formally, it is constructed as follows: when the server is created in the program, this 

maps to a server type component in the architecture; ClientThreads map to client 

components, and the socket connection maps to an architectural connector between 

each client and server.  

2.3.4.1 Instrumentation 

The act of instrumenting a system to produce runtime events is not a novel aspect of 

DiscoTect. In fact, wherever possible, we use off-the-shelf technologies for our in-

strumentation. For Java-based systems we have used AspectJ to define instrumen-

tation aspects that are weaved into the compiled bytecode of the programs. These 
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aspects emit events when methods of interest are entered or exited, and when ob-

jects are constructed.  

The aspects can reflectively retrieve information about the runtime environment 

of, for example, a call, to ascertain the calling object, the instance of the object that 

was called, the argument values and types that were passed to the method, the 

method signature, etc. The aspects are written to emit XML elements that conform 

to a schema expected by DiscoTect. For example, to instrument the ChatServer, we 

weaved in aspects to emit events when methods were called and when objects were 

constructed. 

2.3.4.2 Runtime Events 

Two types of runtime events were collected from this running system: call events 

and init events. A call event is reported when a method is invoked. Similarly, an ob-
ject instantiation produces an init event. Take the following two events for example:  

 <init constructor_name=”ServerSocket” instance_id=”10”> 
 
 <call method_name=”ServerSocket.accept”  
   callee_id=”10” return_id=”11” /> 

 

An init event is generated when  

 ServerSocket ss = new ServerSocket(1111) 

 

is executed; a call event is triggered by an execution of a method call. For exam-
ple, the call event above is emitted by the following statement execution. 

 Socket socket = ss.accept() 

 

Because multiple ClientThreads can run concurrently, some of the runtime 

events, such as InputStream.read and OutputStream.write, show up in random order 

and hence may be interleaved with each other. 

A fuller trace of the events that we retrieved when running the program is 

available in Figure 13 of Appendix A, along with the source code of this example. 

These events can be fed into DiscoTect either in real time or off-line, after the pro-

gram has completed running. 

2.3.4.3 DiscoSTEP Program 

A DiscoSTEP program that specifies how to handle the interleaved events between 

the client and server was specified to capture how to map system events into archi-

tectural events. The full specification is given in Figure 14 of Appendix A; in this 

section we discuss some of the rules and how these are combined with the event 

trace to produce the architecture. DiscoTect takes the runtime events from the 

ChatServer to produce architectural events that construct a Client Server style rep-

resentation of the system.  

Figure 4 shows a fragment of the DiscoSTEP program that includes two rules, 

and how they are composed. The CreateServer rule constructs an architecture Server 
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component. It takes the input event under inspection to be an init event named $e. 
The output events include the string event $server_id and the create_component 

event $create_server. The condition for triggering this rule is that the construc-

tor_name attribute of $e contains the string “ServerSocket”. If the rule is triggered, 

the following action is taken: $server_id is assigned the id of the object constructed 

in the init event, and an architecture event that constructs a server component 
named with the id of the newly created instances is assigned to $create_server. 

The $server_id output from the CreateServer rule is fed to the ConnectClient 

rule, which has two inputs: $e and $server_id. Once the these inputs are received by 

ConnectClient, the trigger will check to see if any events are calls to Server-

Socket.accept. If so, output events $client_id, $create_client and $cre-

ate_cs_connection are assigned appropriate values to construct both the client com-

rule CreateServer { 

 input { init $e; } 
 output { string $server_id; create_component $create_server; } 
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 

 action = {?  
  let $server_id := $e/@instance_id; 
     let $create_server :=  
   <create_component name=”{$server_id}” 

       type=”ServerT” />;  
 } 
} 

rule ConnectClient { 
 input { call $e; string $server_id; } 
 output {  
  create_component $create_client;  

       create_connector $create_cs_connection; 
       string $client_id;  
 } 
 trigger {? 

  contains($e/@method_name, “ServerSocket.accept”) 
   and $e/@callee_id = $server_id  
 ?} 

 action = {? 
  let $client_id := $e/@return_id; 
  let $create_client :=  
   <create_client name=”{$client_id}” type=”ClientT” />;  

  let $create_cs_connection :=  
   <create_connector name=concat($client_id,”-“,$server_id) 
     type=”CSConnectorT”  

    end1=”{$server_id}” end2=”{$client_id}” />;  
 ?} 
} 
composition { 

 CreateServer.$server_id -> ConnectClient.$server_id; 
 … 
} 

Figure 4. The DiscoSTEP rule to create a Server component. 
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ponent and the connector connecting it with the previously created server compo-

nent. 

Instead of being specific to this particular ChatServer program, our client server 

event processing program is generic enough to be applicable to any client server ap-

plications implemented with the same style (with, at the most, some minor changes 

in the triggers).  

Both the compositions and the rules are well encapsulated. Rules are self-

contained specifications, communicating with each other via inputs and outputs; 

compositions function as glue that assemble the rules. We can reuse compositions by 

applying them to a different system, and reuse rules by assembling them with a dif-

ferent composition (and adding new rules if necessary). 

2.3.5 Satisfying the Requirements 

In this section we revisit the requirements for DiscoSTEP that we introduced in Sec-

tion 2.1 and discuss how DiscoSTEP meets these requirements. 

- Allow M-N mappings between events. Since a DiscoSTEP rule can have an 

arbitrary number of inputs and outputs, this requirement is simply met by 

DiscoSTEP.  

- Keep track of information for use in subsequent stages. Input events and 

output events are data structures that can be passed from one rule to the 

next. These data structures are used to store information that can be passed 

between rules. Compositions define how this data is passed between rules. 

- Cope with concurrent states. The informal execution semantics defined in 

Section 2.3.3 describe how input events are propagated to each rule that can 

accept an event of that type. In this way, these events can start multiple 

execution threads to cope with concurrent states. A rule will wait until it 

gets a set of input events that match a trigger before firing. In this way, in-

terleaved threads of information can be managed.  

- Be flexible with respect to mapping implementation style to architectural 

style The fact that the types of events consumed an produced by are speci-

fied in a DiscoSTEP mapping means that multiple implementation styles 

and architectural styles can be manipulated by DiscoTect. Furthermore, 

though not described in detail in this paper, the abstract syntax of Dis-

coSTEP specifies that a composition itself may have input and output 

events, as well as subcompositions. In this way, compositions can be com-

bined hierarchically to form more complex mappings. So, for example, it is 

possible to take a composition that identifies a mapping between system file 

usage and a data repository architectural style, and combine that with a 

mapping that recognizes the construction of a pipe-filter architecture to de-

fine the mapping for a pipe-filter system that retrieves and stores data in 

files. 

In sum, meeting these requirements means that a DiscoSTEP mapping captures 

the way in which runtime events following an implementation style should be inter-

preted as operations on elements of an architectural style.  
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2.4 Formal Definition of DiscoSTEP 

To define the execution semantics of a DiscoSTEP program, and to formally explain 

how the mappings are interpreted, we use Colored Petri Nets [19]. In [47] we infor-

mally described the semantics of DiscoTect mappings in terms of state machines. 

However, this semantics was awkward because of the need to retain multiple active 

states in the state machine to model the concurrency in the model. We believe that 

Colored Petri Nets are a more appropriate formalism for describing the semantics of 

DiscoSTEP mappings because their tokens provide a rich way of representing con-

current system states.  

The DiscoSTEP language is formally described and modeled so that type check-

ing and consistency checking can be done at the language level. The more interest-

ing definition comes from how DiscoSTEP is formally modeled using Colored Petri 

Nets. Informally, we translate the DiscoSTEP constructs into CP-net constructs in 

the following way: 

- The types for the CP-net are formed out of the union of event types used as 

input and output from all the rules used in a DiscoSTEP composition. 

- Each DiscoSTEP rule becomes a CP-net transition 

- Each group of connected input and output events becomes  a CP-net place.  

- Each DiscoSTEP trigger becomes a guard in the CP-net. 

- The color for a place is derived from the connected input and output event 

type used to construct that place, which are guaranteed to be equivalent be-

cause of the DiscoSTEP type semantics. 

- Each DiscoSTEP action becomes an action in the CP-net. 

- CP-net arcs and nodes are constructed from the composition of the places 

and rules. 

We continue by describing an abstract syntax of DiscoSTEP, which is suitable 

for formal specifications and proofs, followed by typechecking rules that ensure a 

DiscoSTEP program is meaningful. We then describe DiscoSTEP’s semantics 

through rewriting rules that transform a DiscoSTEP program into a Colored Petri 

Net. 

2.4.1 DiscoSTEP Abstract Syntax 

The concrete syntax for DiscoSTEP, which we have been using up to this point, is 

given in Figure 15 of Appendix A. Although this syntax is easily readable, its lack of 

structure makes it poorly suited for formal analysis, including rules for defining Dis-

coSTEP’s type system and semantics. Therefore, we describe an Abstract Syntax for 

DisocSTEP that is more amenable to formal specifications.  

Conceptually, a DiscoSTEP program is a 3-tuple (Tin, Tout, Cmain). Here, Tin and 
Tout represent the sets of input and output events declared in the input and output 
clauses of a DiscoSTEP program. Without loss of generality, we assume that a Dis-

coSTEP program is made up of one top-level component Cmain. We further decompose 
component declarations C into rules, as follows: 

- A composition C is defined to be (@) a tuple: @ o iC  (c, R, C', (v , v ))   
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where c is a name uniquely identifying the composition in the program. We 

represent a sequence with an overbar, so that 1 nR = R ...R  is the set of rules 

defining the behavior of C; C'  is the set of sub-compositions of C; and 

o i(v ,v )  is a set of connections, each of which connects an output variable vo 

of some rule ∈jR R and some input variable vi of some rule ∈kR R . 

- A rule R is a tuple: 

@ in in out out in out inR  (r, (v , t ), (v , t ), pred(v ), (v , exp(v )))  where r is a name 

uniquely identifying the rule in the program; inv  and outv  are input and 

output variables of the rule; ∈in int T  and ∈out outt T  are the type of the input 

and output variables inv  and outv , respectively; inpred(v )  is an XQuery 

predicate that may only use variables from the set of input variables, and 

out in(v , exp(v ))  is an assignment of XQuery expressions over the set of in-

put variables inv  to the output variables outv . Types include XQuery types 

as well as event types; we do not model type structure explicitly. 

We do not directly model the semantics of XQuery, as they are defined else-

where [45]. We also assume that all variable and rule names are globally unique. 

2.4.2 Type Checking 

Not every DiscoSTEP program allowed by the syntax in the previous section makes 

sense. For example, one could write a composition that connects an output of a cer-

tain type to an input of a different type without breaking the syntax. We use a set of 

typechecking rules to ensure that a DiscoSTEP program is well-typed. A well-typed 

DiscoSTEP program has well-defined runtime behavior. 

Figure 5 shows the typechecking rules for DiscoSTEP. We briefly review the 

format for readers less familiar with the standard notation we use [31]. Most of the 

rules have one or more premises, written above the line; if all of these are valid, then 

we can conclude that the conclusion, written below the line, holds. 

The premises and conclusions are judgments of the form Γ- C ok stating that a 

∈ ∈Γ Γ

Γ

1 2

1 2

v :T   v :T
T-CONN

(v , v ) ok|--
 

Γ Γ Γ

Γ

        
T-RULE

in in out out in in out

in in out out in out in

=v : t , v : t pred(v ) : bool exp(v ):t

(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) ok

|-- |--

|--
 

Γ Γ Γ Γ

Γ Γ

 ok     ok     ok
T-COMP

 ok

R C R C 1 2

R C 1 2

R C' , (v , v )

, (c,R, C', (v , v ))

|-- |-- |--

|--
 

Figure 5. The full set of type inference rules for DiscoSTEP. 
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composition C is well-formed given a list Γ mapping variables in scope to their types 
(and similar for rules R and connections (v1,v2)). The notation v:T means variable v 
has type T. 

The first rule states that a connection between variables v1 and v2 is ok if the 
typing assumptions Γ tell us that they have the same type T. Thus this rule would 
prohibit ill-formed connections as described above. 

The second rule states that a rule R is ok if we compute a set of typing assump-
tions Γ from the types of the input and output variables, and if using those assump-

tions we can use XQuery’s type system to conclude that the predicate expression has 

a boolean type and that the output expression for each output variable vout has the 
type tout of that variable. We do not model XQuery’s type system directly, as this is 
defined elsewhere, but we assume the presence of a judgment form Γ  e : T© À  stating 

that XQuery expression e has type T given assumptions Γ [45]. 

The final rule states that a composition is ok if all of its constituent rules, sub-

compositions, and connections are ok. The connections are typechecked using the 

combined typing assumptions of all the constituent rules and sub-compositions, 

since in fact the connections might reference any variables in those parts. 

2.4.3 Translational Semantics of the DiscoSTEP  

According to [19], a CP-net has the definition presented in Figure 6. The trans-

lation semantics of the DiscoSTEP language define how to convert a DiscoSTEP pro-

gram into a CP-net.  

A CP-net is a tuple CPN = (Σ, P, T, A, N, Col, G, E, I) where: 

(i) Σ is a finite set of non-empty types, also called color sets. 

(ii) P is a finite set of places. 

(iii) T is a finite set of transitions. 

(iv) A is a finite set of arcs such that: 

• P ∩ T = P ∩ A = T ∩ A = Ø. 

(v) N is a node function. It is defined from A into P × T ∪ T × P. 

(vi) Col is a color function. It is defined from P into Σ. 

(vii) G is a guard function. It is defined from T into expressions such that: 

• ∀t ∈ T: [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ]. 

(viii) E is an arc expression function. It is defined from A into expressions 

such that: 

• ∀a ∈ A: [Type(E(a)) = Col(p) ∧ Type(Var(E(a))) ⊆ Σ] 

where p is the place of N(a). 

(ix) I is an initialization function. It is defined from P into closed expres-

sions such that: 

• ∀p ∈ P: [Type(I(p)) = Col(p)]. 

 

Figure 6. The definition of Colored Petri Nets, from [19]. 
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Figure 7 gives the full set of translational semantics for mapping between Disco-

STEP and a CP-net, given as a set of functions from a piece of DiscoSTEP syntax to 

one of the elements of the CP-net. The rules may be applied recursively to form the 

corresponding sets in the CP-net definition.  

For example, the first rule in  

Figure 7 gives instructions on how to form the set T of types in a CP-net. If the 

function is applied to a DiscoSTEP rule, then it is the union of all types used in the 

rule. If it is applied to a composition, then it returns the union of the sets of types 

that result from applying the function recursively to all the rules and sub-

compositions defined in the composition. Thus, for rule CreateServer in Figure 4 the 

function GetType(CreateServer) returns the colors init, create_component, and string. 

U

U

in in out out in out in in out

1 2

fun GetType(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = t t

| GetType(c,R,C', (v , v )) = GetType(R) GetType(C')
 

U

in in out out in out in

1 2

funGetTransition(r, (v , t ),(v , t ),pred(v ),(v , exp(v )))=r

|GetTranstion(c,R,C', (v , v ))=GetTransition(R) GetTransition(C')
 

U

B U B

in in out out in out in in out

1 2 1 2 1 2

funGetPlace(r,(v , t ), (v , t ),pred(v ), (v , exp(v )))=v v

|GetPlace(c,R,C', (v , v ))=[v v ]GetPlace(R) [v v ]GetPlace(C')
 

U

B U B

in in out out in out in in outfunGetArc(r,(v , t ), (v , t ),pred(v ),(v , exp(v )))=v ::r r::v

1 2 1 2 1 2| GetArc(c,R, C', (v , v )) = [v v ]GetArc(R) [v v ]GetArc(C')
 

U

B U B

in in out out in out in

in in out out

1 2 1 2 1 2

fun GetNode(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) =

(v :: r, (v , r)) (r :: v , (r, v ))

| GetNode(c,R,C', (v , v )) = [v v ]GetNode(R) [v v ]GetNode(C')

 

U

B U B

in in out out in out in in out

1 2 1 2 1 2

fun GetColor(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (v , t) (v , t)

| GetColor(c,R, C', (v , v )) = [v v ]GetColor(R) [v v ]GetColor(C')
 

B U B

in in out out in out in in

1 2 1 2 1 2

fun GetGuard(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (r, pred(v ))

| GetGuard(c,R,C', (v , v )) = [v v ]GetGuard(R) [v v ]GetGuard(C')
 

B U B

in in out out in out in out in

1 2 1 2 1 2

fun GetAction(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (r :: v , exp(v ))

| GetAction(c,R, C', (v , v )) = [v v ]GetAction(R) [v v ]GetAction(C')
 

∅ ∅U

B U B

in in out out in out in in out

1 2 1 2 1 2

fun GetInit(r, (v , t ), (v , t ), pred(v ), (v , exp(v ))) = (v , ) (v , )

| GetInit(c,R, C', (v , v )) = [v v ]GetInit(R) [v v ]GetInit(C ')
 

Figure 7. The Translational Functions for Mapping between DiscoSTEP and 
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The main complication in the rules is the need to create a place for each group of 

connected input and output variables. We compute the set of places with the Get-

Place function, which uses a union-find data structure. We use set notation to de-

scribe the initial state of the data structure, where we have a set of nodes 

Uin outv v each of which is its own equivalence class representative. The union opera-

tion B1 2[v v ] u  unifies nodes v1 and v2 in the union-find data structure u. We can 
merge two union-find data structures with the operator â  as long as they have no 

nodes in common; if they do have nodes in common, the operation is undefined (we 

can always avoid this problem by naming variables uniquely in the source program, 

e.g. by using rule names as qualifiers). To construct the names of arcs in the CP-net, 

we concatenate the name of a rule and a variable together with the :: operator, as in 
vin::r. 

Taken together, the CP-net for a given composition in outC = (c,R, C', (v , v ))  is 
formed using the following translation rule below. We get the set of places P as the 
equivalence class representatives in the union find data structure (i.e. those nodes 

for which UF.find(x) x= ). We compute a map M mapping each variable to its equiva-
lence class representative. Finally, this map is used to replace variable names with 

the canonical place name in the output of each helper function. The map operation 

does replace names inside of concatenations of the form vin::r. 

P=GetPlace(C) T=GetTransition(C)

A=GetArc(C) N=GetNode(C) Col=GetColor(C)

G=GetGuard(C) E=GetAction(C) I=GetInit(C)

C ( , P, T, A, N, Col, G, E, I)

Σ =GetType(C), ,

, ,

, ,

Σa
 

 

2.4.4 Formally Modeling the Example 

The ChatServer DiscoSTEP program uses the following types: string, init, call, cre-

ate_component, create_connector, and update_component. By applying the transla-

tional semantics, we obtain the color sets for the CP-net as: 

   Σ = {string, init, call, create_component, create_connector, update_component}. 

The transitions in the CP-net are created as: 

T = {CreateServer, ConnectClient, ClientIO, ClientRead, ClientWrite, UpdateServer} 

By applying other translations, the inputs and outputs are translated into CP-net 

places, arcs and node functions, the triggers and actions are translated into CP-net 

guards defined from transitions into predicates, and arc expressions defined from 

arcs to XQuery expressions. Figure 8 shows the resulting net. Note that the back-

ward arcs from, for example, the ClientRead transition to the $client_id place are 

formed through the unification process in the translational semantics, because the 

$client_id output of ConnectClient is bound to the inputs of more than one rule (Cli-

entIO, ClientRead, and ClientWrite).  
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This CP-net representation is then “executed” in our toolset. When an event comes 

into the net, a token is created for each place that is relevant for that event, so that 

it can be compared with the associated guards for interested transitions. There is no 

priority on competing transitions – each matching set of tokens is processed by the 

transition when they match. 

3 Implementation of DiscoTect 

Recall from Section 2 that, to provide a framework for discovering architectures, we 

need to solve three challenges. In this section, we discuss our response to each chal-

lenge. 

Monitoring: We use existing probing technologies to extract monitoring events. 

In the case studies in Sections 4 and 5 we used AspectJ to monitor object creation, 

method invocation, etc. We provide a library that allows aspects to produce system 

events formatted as XML strings which are placed on a JMS event bus to be con-

sumed by DiscoTect. 

Mapping: We have implemented the DiscoTect engine in Java, which follows 

the implementation outlined in this paper. The DiscoSTEP language is implemented 

using JavaCC, a Java-based compiler generator, and uses the Saxon XQuery proces-

sor to parse and execute the XQuery triggers and rules in a DiscoSTEP specification.  

Architecture Building: We represent architectures using the Acme architec-

ture description language [13] (although we are not restricted to this language; in 

principle any architecture description language could serve in this capacity). Opera-

tions on Acme architectures are defined in a library that provides operations that 

form building blocks of architectural actions. To connect to our existing architectural 

tools, DiscoTect produces architectural events formatted as XML strings that are 

forwarded by the AcmeStudio Remote Control plugin, communicating over Java 
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RMI, to incrementally construct the architecture. The analysis capabilities of 

AcmeStudio [34] can then be used to check the architecture with respect to its style, 

or conduct analyses such as performance or schedulability. 

4 AAMS Case Study 

In this section we present a case study to determine the run time architecture of 

AAMS, a simulation test-bed for experimenting with mobile system architectural 

design decisions [22]. The test-bed allows users to specify system resources, tasks 

and scheduling strategies, and simulates the running of the mobile system. We 

chose AAMS because it represents a fairly complex application (approximately 

28KLOC), and the runtime architectural view of the system is well documented. 

This allows us to compare our discovery result with the original documentation. This 

comparison illustrates the use of applying our technique to discover deviations be-

tween the architecture discovered by DiscoTect and the documented AAMS architec-

ture. Furthermore, this case study illustrates how we developed and refined the Dis-

coSTEP specification to produce the final architecture.  

Figure 9 shows the runtime architecture of AAMS as presented in [22]; the fol-

lowing description of the runtime architecture is based on the description in this pa-

per. The Simulation Controller forms a simulation from a description of resources 

Figure 9. Documented runtime view of AAMS 
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and tasks, their configuration, user activities and events, and information that it 

reads from a set of configuration and script files. The Simulation Controller also 

takes commands from the Simulation GUI, to control runtime parameters and feed-

back. It then processes each simulation frame to generate the actual running of the 

system. Each component in the application and resource layers simulates its own 

operation. A set of services for File I/O, Error Reporting and Logging are available 

via publish/subscribe to any simulated object. 

4.1 Design of AAMS DiscoSTEP program 

In this section we present the steps taken to produce the DiscoSTEP program to dis-

cover the AAMS architecture model. Typically, writing these programs is an itera-

tive process, starting with generic rules to discover components and connections, and 

then refining these rules to produce architectures corresponding to a particular 

style. For this case study we used a specialization of a publish/subscribe style that 

distinguishes participating components as tasks, resources, etc. These component 

types are based on the description of AAMS found in [22]. 

To develop the final DiscoSTEP program, we first produced rules that merely 

observed object creation and interaction (through procedure calls). We then refined 

this set of rules to classify objects into their architectural counterparts (e.g., Re-

source, Task, etc.).  

Up to this point, we had not discovered anything about the publish/subscribe 

part of the architecture itself. The preliminary discovery results informed us that all 

the resource and task components interact with an object of the PubSub class using 

two procedure calls named publish and subscribe. We conjectured that the system 

implements publish/subscribe by creating a PubSub object and invoking its two 

methods. This led us to design a specification for this portion of the architecture. 

This specification creates an EventBus connector when it notices the instantiation of 

a PubSub object in the implementation. Once this has been done, an EventTaker role 

is created when DiscoTect notices a call to the publish method of the PubSub object, 

and a Publish port on the component corresponding to the call, and attaches them. 

Similarly PubSub.subscribe leads to the creation of an EventSender role on the 

EventBus providing the method, the creation of a Subscribe port in the component 

requesting the method, and the creation of the attachment. 

4.2 The Discovered Architecture 

Applying the above DiscoSTEP specification to a running instance of AAMS yields 

the architectural model in Figure 10. (We have manually laid out this model to en-

able easier comparison with the view in Figure 9.) We uncovered four types of dis-

crepancies between the documented architectural view and our discovered one.  

1. Isolated, extraneous components/connectors. The result shows two 

EventBus connectors, one of which is isolated from the rest of the system. 

This indicates that one instance is instantiated but never used. Code op-

timization should resolve this discrepancy.  

2. Additional connections between components. Figure 10 does not show any 

connections between the controller component and simulation compo-
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nents such as tasks and schedulers. Nor does it inform us that some of 

the support components (e.g. Logger and Reporting) also subscribe to the 

event bus. Ignoring those “backdoor” connections makes the architectural 

view less accurate; moreover, it might compromise architectural analysis 

where all meaningful interactions between components should be consid-

ered. For example, in evaluating the performance of a publish/subscribe 

infrastructure, the existence of hidden communication channels could in-

validate deadlock or throughput analyses. 

3. Misplaced connections between components. The discovered architecture 

shows a different File I/O scheme: instead of the GUI reading three files 

(c.f. Figure 9), the controller reads two files. This discrepancy could cause 

errors during evolution if the AAMS system was to work in a distributed 

environment. The evolution might require that the file reading compo-

nents run on the same computer as that containing the files. The docu-

mented architecture would suggest that Simulator GUI is the component 

that should stay with the files, when in fact it is the Controller compo-

nent according to the implementation. 

Figure 10. The Discovered Architecture of AAMS. 
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4. Missing components/connectors. Two of the components—User and Envt 

(Environment)—recorded in the document do not show up in the discov-

ered architecture.  

To confirm that DiscoTect discovered the actual architecture of the implementa-

tion, and to understand the discrepancies, we conferred with the AAMS developers. 

They agreed that DiscoTect produced a more complete and correct architectural de-

scription than their diagram, and uncovered some errors in their coding. However, 

the missing User and Environment components are due to the fact that these repre-

sent user interaction, and are not actual components in the implementation.  

5 EJB Case Study 

In this section we present a second case study to determine the run-time architec-

ture of the Duke’s Bank Application – a simple EJB (Enterprise Java Beans) bank-

ing application created by Sun Microsystems as a demonstration of EJB functional-

ity. Duke’s Bank allows bank customers to access their account information and to 

transfer balances from one account to another. It also provides an administration 

interface for managing customers and accounts. We use this case study to demon-

strate how the architecture of an EJB application can be discovered using DiscoTect. 

We chose this system because its architecture is well documented in Sun Microsys-

tems’ J2EE (Java2 Platform, Enterprise Edition) tutorial [16], which enables us to 

compare the actual discovered architecture with the one presented in the documen-

tation. For the case study, we used version 1.3 of the application provided by Sun. 

We wrote an aspect that injected advice to object instantiations, method calls 

and field modifications. We compiled the Duke’s Bank application along with the as-
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pect, using an AspectJ compiler, so that system execution events were traced as the 

application ran. 

Figure 11 gives a view of how the components interact in the Duke’s Bank sys-

tem as presented in [16]. The EJB application has three session beans: AccountCon-

trollerBean, CustomerControllerBean, and TxControllerBean (Tx stands for a busi-

ness transaction, such as transferring funds). These session beans provide a client's 

view of the application's business logic. For each business entity represented in the 

simplified banking model, the application has a matching entity bean: AccountBean, 

CustomerBean, and TxBean. The business methods of the AccountControllerBean 

session bean manage the account-customer relationship and get the account infor-

mation using AccountBean and CustomerBean entity beans. CustomerController-

Bean provides methods for creating, removing and updating customers through Cus-

tomerBean entity beans. The TxControllerBean session bean handles bank transac-

tions. It accesses AccountBean entity beans to verify the account type and to set the 

new balance, and accesses TxBean to keep records of the transactions. 

5.1 Design of the EJB DiscoSTEP Program 

We now present the steps taken to produce the DiscoSTEP specification to discover 

the Duke’s Bank architecture. We used a specialization of an EJB style that distin-

guishes participating components as entity beans, session beans, bean containers, 

database etc. These component types are based on the EJB specification found in 

[10]. 

As we did in the previous case study, we first produced primitive rules that merely 

observed object interaction and creation (through procedure calls and object instan-

tiations). We then refined these rules to classify objects into their architectural coun-

terparts (e.g., Beans, Bean Containers, Database etc.) by checking the class con-

structor names. For example, we created a SessionContainer object when its con-

structor had the name of “SessionContainer”. The relationships between the beans, 

the bean containers and the database were captured in the following way: according 

to the EJB specification, the beans are maintained by their corresponding contain-

ers, so we connected the beans with the containers controlling them by observing the 

procedure calls made by the containers to manage the life cycles of the beans.  

Knowing that database access was implemented using JDBC (Java Database Con-

nectivity) [18], we monitored the standard JDBC APIs to uncover the connections 

between the beans and the database; the interactions between the beans were also 

monitored and represented as connectors linking them together. 

5.2 The Discovered Architecture 

Applying the specification just described to a running instance of Duke’s Bank yields 

the architectural model in Figure 12. We have manually organized the layout this 

model for better comprehensibility. We can make the following observations based 

on this process.  

1. Reflection of runtime instances. Besides showing the bean and the con-

tainers, the discovered result also details each bean and container in-

stance created at runtime. The capacity of tracing the individual bean 
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and container instances is useful for performance analysis and fault di-

agnosis. In addition, the relatively complex m to n relationships between 

beans and bean containers are revealed. 

2. Verification of Bean Interplay. The interactions between the beans shown 

in Figure 12 are consistent with those described in the architecture 

shown in Figure 11: there are communication channels between Ac-

countControllerBean and AccountBean, AccountControllerBean and Cus-

Figure 12. Discovered architecture of Duke’s Bank 
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tomerBean, CustomerControllerBean and CustomerBean,  TxController-

Bean and TxBean, TxControllerBean and AccountBean. 

3. Discrepancies in Database Access. Figure 11 does not show any connec-

tions between the session beans and the database, which implies that all 

database access goes through the entity beans. This is consistent with 

Sun’s EJB specification [18] However a “database write” connector did 

appear in the discovered architecture. Further (manual) source code 

analysis confirmed that AccountControllerBean does directly write to the 

database; a violation of the architecture. As discussed in the previous sec-

tion, identifying communication “backdoor” connections like this is useful 

for architectural analysis and to ensure architectural conformance.1 

6 Related Work 

To analyze a running system, it is first necessary to get information from it. There 

are many technologies available for monitoring systems, and we build on those. For 

example, Balzer [4] and Wells [44]  provide systems to instrument the source code to 

produce trace information and manipulate runtime artifacts to get the information; 

aspect-oriented systems such as AspectJ allow use to instrument binary code when 

the source is not available We can use any of these approaches to get information 

out of the system. 

Monitoring mechanisms do not by themselves solve the hard problem of map-

ping from code to more abstract models; event correlation and abstraction is also 

needed. Work by Dias and Richardson [9] uses an XML-based language to describe 

runtime events and use patterns to map these events into high-level events. How-

ever, analyzing these abstracted events to determine architectural structure is not 

addressed. In addition, a simple static mapping from low-level system events to 

high-level events has limited expressiveness. For example, it cannot handle the case 

where the event analyzer initially has an interest in one set of events, but then 

changes its interest after the initial events have occurred. Also it doesn’t provide a 

way of specifying event correlations or mapping a series of correlated low-level 

events to a single high-level event—a crucial capability needed when discovering the 

architecture of a system. Approaches to correlating events, for example GEM [29] 

and SEL [51] and work by Kaiser [20] provide sophisticated event correlation lan-

guages that can detect when certain combinations of events have occurred and, in 

some cases, what actions to perform based on those correlations. Our approach is 

similar, but it makes architectural styles or patterns explicit; our mappings can be 

used to map low-level events to high-level architectural events that are amenable to 

checking for consistency against particular architectural styles. 

In prior work, we developed an infrastructure for doing certain kinds of abstrac-

tion [15]. However, this approach was limited to observing properties of a system 

and reflecting them in a pre-constructed architectural model. Here we show how to 

create such a model. 

                                                

1 Note that this error has been corrected in the most recent version of the Dukes Bank J2EE 

application. 
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A number of researchers have investigated the problem of presenting dynamic 

information to an observer. For example, some researchers present information 

about variables, threads, activations, object interactions, and so forth 

[33][41][42][50]. Ernst and colleagues show how to dynamically detect program in-

variants by examining values computed during a program execution and by looking 

for patterns and relationships among them [11]. This is somewhat different from de-

tecting architectural structure.  

Madhav [26] describes a system that allows Ada 95 programs to be monitored 

dynamically to check conformance to a Rapide architectural specification [Luck-

ham96]. His approach requires the source code to be annotated so that it can be 

transformed to produce events to construct the architecture. In contrast, our ap-

proach does not require access to the source code, and it does not rely on explicit ar-

chitectural construction directives to be embedded in the code as does the approach 

used by Aldrich and colleagues [2].  

There has been research in using Colored Petri Nets to dynamically determine 

software architectures from running systems using Colored Petri Nets. This work 

either focuses on a particular quality attribute (e.g., [1] for performance analysis), 

uses UML as the modeling language, which is very close to the actual code [49] or 

checks interactions on pre-known connections are of the correct protocol [6]. In con-

trast, our approach focuses on determining the component and connector architec-

ture view of a running system where the architecture particular components and 

connections may not be known a priori, and where the actual architectural view may 

be much more abstract than the programming language constructs used to imple-

ment the system. Moreover, our approach is agnostic about the specific architectural 

styles that may be used and representation language. 

A large body of research has investigated specification of the dynamic behavior 

of software architectures. Of the many approaches, some use explicit state machines 

(e.g., as described by Allen and Garlan [3] and Vieira and colleagues [40]). These ap-

proaches, however, do not link architecture to an executing system. 

7 Conclusions and Future Work 

In this paper we described an approach to “discovering” the architecture of a run-

ning system that uses a set of pattern recognizers that convert monitored system 

observations into architecturally-meaningful events. The key idea is to exploit im-

plementation regularities and knowledge of the architectural style that is being im-

plemented to create a mapping that can be applied to any system that conforms to 

the implementation conventions, to yield a view in that architectural style. The 

mapping itself defines a novel form of behavior specification (realized as a Colored 

Petri Net) that relates low-level events to architecturally-significant actions. The 

power of Petri Nets is used to model the concurrent threads of event recognition, al-

lowing us to disentangle the interleaved sequences of low-level events that contrib-

ute to higher-level architectural behavior. 

There are a number of advantages of this approach. First, it can be applied to 

any system that can be monitored at runtime. In our case, we have demonstrated 

two case studies written in Java, but we have recently experimented successfully 

with the use of AspectC to extract run-time information from C and C++ programs. 
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In general, any monitoring environment that allows us to capture object creation, 

method invocation, and instance variable assignment will serve as a sufficient foun-

dation for our run-time monitoring. Second, by simply substituting one mapping de-

scription for another, it is possible to accommodate different implementation conven-

tions for the same architectural style, or conversely to accommodate different archi-

tectural styles for the same implementation conventions. For example, although not 

described here, we have been able to discover the Pipe/Filter architecture of systems 

implemented using different pipe conventions.  

There are, however, several inherent weaknesses to the approach. The first is 

that it only works if an implementation obeys regular coding conventions. Com-

pletely ad hoc bodies of code are unlikely to benefit from the technique. Second, it 

only works if one can identify a target architectural style, so that the mapping 

“knows” the output vocabulary. Third, as with any analysis based on runtime obser-

vations, it suffers from the problem that you can only analyze what is actually exe-

cuted. Hence, questions like “is there any execution that might violate a set of style 

constraints” cannot be directly answered using this method. Fourth, the DiscoSTEP 

mapping needs to be created via an iterate-and-test paradigm, and hence the results 

are somewhat dependent on the skill of the creator of the recognizer. Thus our tech-

niques are best viewed as one of several technologies that an architect must have in 

his arsenal of architecture conformance checking tools. For example, we believe that 

DiscoTect can be effectively combined with static analysis tools such as Dali [21] or 

Armin [30] to provide complementary kinds of analysis, whereby runtime observa-

tions can be combined with statically-extracted facts. In this way we should be able 

to achieve a more complete and accurate picture of the as-built system. 

These potential defects also point the way to future research in this area. First 

is the area of system monitoring. As mentioned, we have experimented with a num-

ber of existing monitoring technologies for Java and C++. However, monitoring 

technologies for other kinds of implementations and system properties is a research 

area that should continue to provide increasing capabilities in the future that we can 

leverage. 

Second is the area of codifying the ways in which architectural styles are im-

plemented. As technology advances, implementation techniques will necessarily 

change, and it will be important to augment the set of mappings as that happens. 

We envision a large library of recognizers for common architectural frameworks 

available as open source libraries, which would track the most common architectural 

frameworks in practical use. 

Third is the area of architectural coverage metrics, similar to coverage metrics 

for testing. It would be good, for example, to have some confidence that in running a 

system with various inputs, we have exercised a sufficiently comprehensive part of 

the system to “know”, with some certainty, what its architecture is.  

Fourth, we would like to find a way to make the definition of implementation-

architecture mappings more declarative. While the operational definition of state 

machines as the carrier of those mappings is a good first step, we can imagine more 

abstract forms of characterization that will be easier to create and analyze.  

Fifth, while the approach we have outlined focuses primarily on recognizing ar-

chitectural structure, we believe it could be easily extended to architectural behavior. 

For example, we can imagine using the same run-time abstraction techniques to 
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check that the observed interaction between two components conforms to the proto-

col expected over the corresponding architectural connector. Similarly we might, ob-

serve timing behavior, which could be compared with an architectural specification 

of expected performance. 

Finally, we are still gaining experience with use of these tools in practice. The 

process of developing the DiscoSTEP mapping is a long, iterative process, that cur-

rently requires intimate knowledge of the implementation conventions. While we 

can never truly eliminate this need, we are investigating process, conventions, and 

tools, that could make this process less time-consuming and error-prone. 
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Appendix A 
Java code: 

 
public class ChatServer { 
 static class ClientThread extends Thread { 
 private Socket socket; 
   private Vector clients; 
   public ClientThread(Socket socket, 
           Vector clients) { 
     this.socket = socket; 
    this.clients = clients; 
   clients.addElement(socket); 
  } 
 public void run() { 
  byte[] buf = new byte[1024]; 
  int len = 0; 
  try { 
   InputStream is =  
    socket.getInputStream(); 
   while ((len = is.read(buf)) != -1) { 
    // Broadcast the message to  
    // all the clients 
    for (int i = 0; i < clients.size(); i++) { 
     OutputStream os = 
      ((Socket) clients.get(i)). 

      getOutputStream();  
     os.write(buf, 0, len); 
    } 
   } 
  } catch (IOException e) { 
  } finally { 
   clients.removeElement(socket); 
   try { 
    socket.close(); 
    } catch (IOException e) {} 
  } 
 } 
 private static Vector clients = new Vector(); 
 public ChatServer() { 
  ServerSocket ss = 
    new ServerSocket(1111); 
  while (true) { 
   // Wait for clients to connect 
   Socket socket = ss.accept(); 
      new ClientThread(socket, clients).start(); 
    } 
 } 
 public static void main(String[] args)  
   throws IOException { 
  new ChatServer(); 
 } 
} 

Runtime events: 

<init constructor_name=”ServerSocket” 
  instance_id=”10”> 
<call method_name=”ServerSocket.accept” 
  callee_id=”10” return_id=”11” …/> 
… 
<call method_name=”Socket.getInputStream” 
  callee_id=”11” return_id=”1000” …/> 
<call method_name=”ServerSocket.accept” 
  callee_id=”10” return_id=”12” …/> 
… 
<call method_name=”InputStream.read” 
  callee_id=”1000” …/> 
<call method_name=”Socket.getOutputStream” 
  callee_id=”11” return_id=”1001” …/> 
<call method_name=”OutputStream.write” 
  callee_id=”1001” …/> 
<call method_name=”Socket.getInputStream” 
  callee_id=”12” return_id=”1002” …/> 
<call method_name=”InputStream.read” 
  callee_id=”1002” …/> 
<call method_name=”InputStream.read” 
  callee_id=”1000” …/> 
<call method_name=”Socket.getOutputStream” 

  callee_id=”12” return_id=”1003” …/> 
<call method_name=”OutputStream.write” 
  callee_id=”1003” …/> 
… 

 

Figure 13. The Java code for the ChatServer, and events produced through 

one run that are subsequently fed into DiscoTect. 
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rule CreateServer { 

 input { init $e; } 
 output { string $server_id; create_component $create_server; } 
 trigger {? contains($e/@constructor_name, “ServerSocket”) ?} 
 action = {?  
  let $server_id := $e/@instance_id; 
     let $create_server := <create_component name=$server_id type=”ServerT” />;  
 } 
} 
rule ConnectClient { 
 input { call $e; string $server_id; } 
 output {  
  create_component $create_client;  
      create_connector $create_cs_connection; 
      string $client_id;  
 } 
 trigger {? 
  contains($e/@method_name, “ServerSocket.accept”) and $e/@callee_id = $server_id  
 ?} 
 action = {? 
  let $client_id := $e/@return_id; 
  let $create_client := <create_client name=$client_id type=”ClientT” />;  
  let $create_cs_connection :=  
   <create_connector name=concat($client_id,”-“,$server_id) 
     type=”CSConnectorT” end1=$server_id end2=$client_id />;  
 ?} 
} 
rule ClientIO { 
 input { call_event $e; string $client_id; } 
 output { string $io_id; } 
 trigger {? 

  (contains($e/@method_name, “Socket.getInputStream”) or 
      contains($e/@method_name, “Socket.getOutputStream”)) and  
     $e/@callee_id = $client_id  
 ?} 
 action {? let $client_id := $e/@return_id; ?} 
} 
 
rule ClientRead { 
 input { $e : call_event; $io_id : string; $client_id : string; } 
 output { $update_client : update_component; $activity_type : string;} 
 trigger {? (contains($e/@method_name, “InputStream.read”) and $e/@callee_id = $io_id ?} 
 action = {? 
  let $update_client :=  
   <update_component name=$client_id property=”Read” value=”true” />; 
   let $activity_type := “Read”;  
 ?} 
} 
rule ClientWrite { 
 input { $e : call_event; $io_id : string; $client_id : string; } 
 output { $update_client : update_component; $activity_type : string; } 
 trigger {? (contains($e/@method_name, “OutputStream.write”) and $e/@callee_id = $io_id 
?} 
 action = {? 
  let $update_client :=  
       <update_component name=$client_id property=”Write” value=”true” />;  
    let $activity_type := “Read”;  
 ?} 
} 
rule UpdateServer { 
 input { string $server_id; string $activity_type; } 
 output { update_component $update_server; } 
 trigger {? ($activity_type = “Read”) or ($activity_type = “Write”) ?} 
 action = {? 
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  let $update_server :=  

   <update_componnet name=$server_id property=”Activity” value=$activity_type />;  
 ?} 
} 
composition System { 
 CreateServer.$server_id -> ConnectClient.$server_id; 
 ConnectClient.$client_id -> ClientIO.$client_id; 
 ConnectClient.$client_id <-> ClientRead.$client_id; 
 ClientIO.$io_id <-> ClientRead.$io_id; 
 ConnectClient.$client_id <-> ClientWrite.$client_id; 
 ClientIO.$io_id <-> ClientWrite.$io_id; 
 ClientWrite.$activity_id -> UpdateServer.$activity_id; 
 CreateServer.$server_id <-> UpdateServer.$server_id; 
} 

Figure 14. The DiscoSTEP program for mapping between a run of the pro-

gram in Figure 13 and a simple client-server architecture. 

 

PROGRAM ::=                                                    
  IMPORT*; EVENT; (COMPOSITION | RULE) * 
 
IMPORT ::=                                                    
 import quoted file name 
 
EVENT ::=                                                                    event type declarations: 
   ‘event’ ‘{‘  
    ‘input’ ‘{‘ (ID ‘;’)* ‘}’  
    ‘output’ ‘{‘ (ID ‘;’)* ‘}’ 
   ‘}’ 
 
RULE ::=                                                 rule declarations: 

   ‘rule’ ID ‘{‘ RULEPARTS ‘}’ 
 
RULEPARTS2 ::=                                                             rule property declarations: 
   ‘input’ ‘{‘ (ID VARID ‘;’)* ‘}’ 
   ‘output’ ‘{‘ (ID VARID ‘;’)* ‘}’ 
   ‘trigger’ ‘{$’ XPRED ‘$}’ 
   ‘action’ ‘{$’ XQUERY ‘$}’ 
    
COMPOSITION ::=                                                         composition declarations: 
   ‘composition’ ID ‘{‘ COMPOSITIONPART* ‘}’ 
 
COMPOSITIONPART::=                                                   composition property declarations: 
   MEMBER ‘->’ MEMBER 
   MEMBER ‘<->’ MEMBER   
 
MEMBER ::= 
   ID ‘.’ VARID | 
   ID ‘.’ MEMBER 
 
ID ::= [a-zA-Z][a-zA-Z0-9_]* 
 
VARID ::= [$][a-zA-Z0-9_]*  

  

Figure 15. The concrete syntax of DiscoSTEP. 

                                                
2 Note that the productions XPRED and XQUERY in the language refer to XQuery Predi-

cates and XQuery FLWOR expressions, respectively. The grammar for these is defined in 

[XQuery]. 


